Hall Ticket Number:

Code No. : 13119A

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Main Examinations, December-2018

Linear Algebra and its Applications

(Open Elective-I)

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	Μ	L	CO	PO
	Part-A (10 × 2 = 20 Marks)				
1.	In a vector space V, Prove that additive inverses are unique.	2	1	1	1
2.	Verify whether $S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$ is a basis for the vector space	2	3	1	1
	$V = R^3$.				
3.	If $T: P_2 \rightarrow P_2$ is a linear operator and	2	2	2	1
	$T(1) = 1 + x$; $T(x) = 2 + x^2$; $T(x^2) = x - 3x^2$ then find $T(-3 + x - x^2)$.				
4.	Show that $[T^{-1}]_B = ([T]_B)^{-1}$ if T is an invertible linear operator on a finite dimensional vector space V and B is an ordered basis for V.	2	4	2	2
5.	Let v be a fixed vector in \mathbb{R}^n and define $S = \{u \mid u \cdot v = 0\}$. Show that S is a subspace of \mathbb{R}^n .	2	3	3	2
6.	Determine Whether V is an inner product space	2	2	3	1,2
	$V = \mathbb{R}^2$; $\langle u, v \rangle = u_1 v_1 - 2 u_1 v_2 - 2 u_2 v_1 + 3 u_2 v_2$.				
7.	Find the orthogonal complement of W in \mathbb{R}^n with the standard inner product $\lceil 2 \rceil$	2	2	4	2
	$\mathbf{W} = \mathbf{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \right\}.$				
8.	State Projection Theorem.	2	2	4	1
9.	Find the coordinates of the vector v relative to the ordered basis B B= $\{1, x - 1, x^2\}$ ' v = p(x) = -2x^2 + 2x + 3.	2	2	1	2
10.	Explain the importance of Gram-Schmidt process	2	4	3	1,2

Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a) Let a, b and c be fixed real numbers. Let V be the set of points in three- dimensional Euclidean space that lie on the plane P given by: ax + by + cz = 0.	4	4	1	7
Define addition and scalar multiplication on V coordinate wise. Verify that V is a vector space.				
b) Let W be the subspace of M _{2x2} of matrices with trace equal to 0, and let $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$. Show that S is a basis for W.	4	3	1	1,2
 12. a) Suppose that T: V → W is a linear transformation and B = {v₁,, v_n} is a basis for V. If T is one-to-one, then Prove that {T(v₁), T(v_n)} is a basis for R(T). 	4	5	2	2
b) Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator and B = { v_1 , v_2 , v_3 } a basis for \mathbb{R}^3 . Suppose	4	3	2	2
$T(v_1) = \begin{bmatrix} -2\\1\\1 \end{bmatrix} \qquad T(v_2) = \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \qquad T(v_3) = \begin{bmatrix} -2\\2\\0 \end{bmatrix}$	-			
i) Determine whether $w = \begin{bmatrix} -6\\5\\0 \end{bmatrix}$ is in the range T.				
ii) Find a basis for R (T).iii) Find dim (N(T)).				
13. a) State and prove Cauchy-Schwartz inequality	4	2	3	2
b) Let V = P ₂ with inner product defined by $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$.	4	2	3	2
 i) Show that the vectors in S = {1, x, 1/2 (3x² - 1)} are mutually orthogonal. ii) Find the length of each vector in S. 	r			
		2	4	2
14. a) Define an inner product on P_3 by $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Use the standard basis $B = \{v_1, v_2, v_3, v_4\} = \{1, x, x^2, x^3\}$ to construct an orthogonal basis for P_3 .	n	2	4	2
	+ 4	2	4	2
b) Find a basis for the orthogonal complement of W in P ₂ with the inner product $\langle p, q \rangle = \int_{0}^{1} p(x)q(x)dx$, W = span {x - 1, x ² }				

a)	A subset of S of R ³ is given.	4	2	1	2
		$S = \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\5\\1 \end{bmatrix} \right\}$				
		i) Find span (S) ii) Is S linearly independent?				
b))	Let $f(x) = x^3$ defined on R and let $V = \{ f(x + t) t \in R \}$ Define $f(x + t_1) + f(x + t_2) = f(x + t_1 + t_2), cf(x + t) = f(x + ct)$ i) Determine the additive identity and additive inverses. ii) Show that V is a vector space.	4	2	1	1,2
6. a	a)	Let W be a subspace of an inner product space V and $B = \{ w_1, \ldots, w_m \}$ a basis for W. Then prove that vector v is in W^{\perp} if and only if v is orthogonal to each vector in B.	4	4	3	2
ł	b)	Define an inner product on P_3 by $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$.	4	3	3	2
		 Let p(x) = x and q(x) = x². i) Find proj_q p. ii) Find p - proj_q p and verify that proj_q p and p - proj_q p are orthogonal. 				
17.		Answer any two of the following:				
ł	a)	Determine whether $B = \left\{ \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -4 \end{bmatrix} \right\}$ is a basis for M _{2 × 2} .	4	3	1	2
1	b)	If $S = \{v_1, v_2, \ldots, v_n\}$ is an orthogonal set of nonzero vectors in an inner product space V, then prove that S is linearly independent.	4	5	3	2
	c)	Let V and W be finite dimensional vector spaces and $B = \{v_1, v_2,, v_n\}$ a basis for V. If T: V \rightarrow W be a linear transformation, then prove that $R(T) =$ span $\{T(v_1), T(v_2),, T(v_n)\}$	4	5	2	2

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	88.17
2	Knowledge on application and analysis (Level-3 & 4)	6.57
3	*Critical thinking and ability to design (Level-5 & 6)	5.26
	(*wherever applicable)	

ආආආණණ