VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (CBCS) III-Semester Main Examinations, December-2018

Linear Algebra and its Applications
 (Open Elective-I)

Time: 3 hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	CO	PO
	Part-A ($10 \times 2=20 \mathrm{Marks}$)				
1.	In a vector space V, Prove that additive inverses are unique.	2	1	1	1
2.	Verify whether $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis for the vector space	2	3	1	1
	$V=R^{3}$.				
3.	If $T: P_{2} \rightarrow P_{2}$ is a linear operator and	2	2	2	1

$\mathrm{T}(1)=1+\mathrm{x} ; \mathrm{T}(\mathrm{x})=2+\mathrm{x}^{2} ; \mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{x}-3 \mathrm{x}^{2}$ then find $T\left(-3+\mathrm{x}-\mathrm{x}^{2}\right)$.
4. Show that $\left[T^{-1}\right]_{B}=\left([T]_{B}\right)^{-1}$ if T is an invertible linear operator on a finite dimensional vector space V and B is an ordered basis for V .
5. Let v be a fixed vector in R^{n} and define $S=\{u \mid u \cdot v=0\}$. Show that S is a subspace of R^{n}.
6. Determine Whether V is an inner product space
$V=\mathrm{R}^{2} ;\langle u, v\rangle=u_{1} v_{1}-2 u_{1} v_{2}-2 u_{2} v_{1}+3 u_{2} v_{2}$.
7. Find the orthogonal complement of W in R^{n} with the standard inner product $\mathrm{W}=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]\right\}$.
8. State Projection Theorem.
9. Find the coordinates of the vector \mathbf{v} relative to the ordered basis \mathbf{B} $\mathrm{B}=\left\{1, \mathrm{x}-1, \mathrm{x}^{2}\right\} \quad \mathrm{v}=\mathrm{p}(\mathrm{x})=-2 \mathrm{x}^{2}+2 \mathrm{x}+3$.
10. Explain the importance of Gram-Schmidt process

Part-B $(5 \times 8=40$ Marks $)$

11. a) Let a, b and c be fixed real numbers. Let V be the set of points in threedimensional Euclidean space that lie on the plane P given by:
$a x+b y+c z=0$.
Define addition and scalar multiplication on V coordinate wise. Verify that V is a vector space.
b) Let W be the subspace of $\mathrm{M}_{2 \times 2}$ of matrices with trace equal to 0 , and let $S=\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$. Show that S is a basis for W.
12. a) Suppose that $T: V \rightarrow W$ is a linear transformation and $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V. If T is one-to-one, then Prove that $\left\{T\left(v_{1}\right), \ldots T\left(v_{n}\right)\right\}$ is a basis for $R(T)$.
b) Let $\mathrm{T}: R^{3} \rightarrow R^{3}$ be a linear operator and $\mathrm{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis for R^{3}. Suppose
$T\left(v_{1}\right)=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right] \quad T\left(v_{2}\right)=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right] \quad T\left(v_{3}\right)=\left[\begin{array}{r}-2 \\ 2 \\ 0\end{array}\right]$
i) Determine whether $w=\left[\begin{array}{c}-6 \\ 5 \\ 0\end{array}\right]$ is in the range T.
ii) Find a basis for $R(T)$.
iii) Find $\operatorname{dim}(N(T))$.
13. a) State and prove Cauchy-Schwartz inequality
b) Let $\mathrm{V}=P_{2}$ with inner product defined by $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.
i) Show that the vectors in $S=\left\{1, x, \frac{1}{2}\left(3 x^{2}-1\right)\right\}$ are mutually orthogonal.
ii) Find the length of each vector in S.
14. a) Define an inner product on P_{3} by $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$.

Use the standard basis $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\left\{1, x, x^{2}, x^{3}\right\}$ to construct an orthogonal basis for P_{3}.
b) Find a basis for the orthogonal complement of W in P_{2} with the inner product $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x, \mathrm{~W}=\operatorname{span}\left\{\mathrm{x}-1, \mathrm{x}^{2}\right\}$
$4 \quad 4 \quad 1$
$\begin{array}{llll}4 & 3 & 1\end{array}$
$4 \quad 5 \quad 2 \quad 2$
$\begin{array}{lll}4 & 3 & 2\end{array}$

4232
$\begin{array}{llll}4 & 2 & 3\end{array}$
$\begin{array}{llll}4 & 2 & 4 & 2\end{array}$

424
a) A subset of S of R^{3} is given.

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
1
\end{array}\right]\right\}
$$

i) Find span (S)
ii) Is S linearly independent?
b) Let $f(x)=x^{3}$ defined on R and let $V=\{f(x+t)$ It $\in R\}$

Define $f\left(x+t_{1}\right)+f\left(x+t_{2}\right)=f\left(x+t_{1}+t_{2}\right), \quad c f(x+t)=f(x+c t)$
i) Determine the additive identity and additive inverses.
ii) Show that V is a vector space.
16. a) Let W be a subspace of an inner product space V and $B=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for W. Then prove that vector v is in W^{\perp} if and only if v is orthogonal to each vector in B.
b) Define an inner product on P_{3} by $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$.

Let $p(x)=x$ and $q(x)=x^{2}$.
i) Find $\operatorname{proj}_{q} p$.
ii) Find $\mathrm{p}-\operatorname{proj}_{q} p$ and verify that $\operatorname{proj}_{q} p$ and $\mathrm{p}-\operatorname{proj}_{q} p$ are orthogonal.
17. Answer any two of the following:
a) Determine whether $B=\left\{\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 0 & -4\end{array}\right]\right\}$ is a basis for $\mathrm{M}_{2 \times 2}$.
b) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is an orthogonal set of nonzero vectors in an inner product space V, then prove that S is linearly independent.
c) Let V and W be finite dimensional vector spaces and $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ a basis for V. If $T: V \rightarrow W$ be a linear transformation, then prove that $R(T)=$ $\operatorname{span}\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	88.17
2	Knowledge on application and analysis (Level-3 \& 4)	6.57
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	5.26

